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We study ground state properties of the double-exchange model on triangle chain in the classical
limit on t2g spins. The ground state is determined by a competition among the kinetic energy of
the eg electron, the antiferromagnetic exchange energy between the t2g spins, and frustration due
to a geometric structure of the lattice. The phase diagrams are obtained numerically for two kinds
of the models which differ only in the transfer integral being real or complex. The properties of the
states are understood from the viewpoint of the spin-induced Peierls instability. The results suggest
the existence of a chiral glass phase which is characterized by a local spin chirality and a continuous
degeneracy.

PACS numbers: 75.10.-b, 75.30.Et, 75.30.Mb, 11.15.-q

I. INTRODUCTION

The double-exchange mechanism [1] has received a spe-
cial attention as one of the canonical mechanisms which
explain the magnetism and transport properties of a class
of transition metals. The Hamiltonian which describes it
is known as the double-exchange model [2, 3]. Assuming
a two sub-lattice structure, de Gennes obtained the phase
diagram as a function of temperature and hole concentra-
tion, x [3]. The ground state exhibits the antiferromag-
netic (AF), ferromagnetic, and canted AF phases [3, 4].
The disordered, two sub-lattice, and helical spin struc-
tures and their degeneracies were discussed [3] combining
the two sub-lattice structure. These rich structures are
induced from competition between the kinetic energy of
the eg electron and the direct AF coupling between t2g

spins [3, 5, 6].

On the other hand, studies without imposing the re-
striction to the two sub-lattice structure have been re-
ported. These results suggest the existence of the ground
state without the translation invariance. An existence of
the phase separation was reported [4, 9, 10, 11, 12]. (For
the model without the direct exchange between t2g spins
see refs. [13, 14, 15, 16, 17, 18, 19, 20, 21].) The analy-
sis based on the spin-induced Peierls instability [22, 23]
suggest the existence of a super-cell structure of the lo-
calized spins. The spin state is distorted with a period
which is commensurate with the Fermi momentum so as
to open the Peierls gap, thus stabilizing the system. This
is isomorphic to the Peierls instability [24]. The only dif-
ference is that the spin degree of freedom is distorted,
instead of the lattice degree of freedom.

In two or more dimensions, the degree of the phase fac-
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tor in the transfer integral plays an important role [25,
26]. For example, the generalized Peierls instability [27]
is expected to work and the ground state exhibits a quan-
tum Hall effect [22] if the state satisfies conditions [28].
(See also ref [29].) Actually the staggered π-flux state is
stabilized at half-filling in the two dimensional square lat-
tice [22, 30]. The anomalous Hall effect induced from the
Berry phase was investigated [29, 31, 32]. The extensive
investigations for the phase diagram were performed in
two or three dimensions [33, 34, 35] and a flux state with
super-cell structure was found away from half-filling.

Recently the most intriguing is the study within the
framework of Tsallis nonextensive statistics [36, 37, 38].

In this paper, we study the double-exchange model on
the triangle chain to investigate the effects of (i) the phase
factor in the transfer integral and (ii) the frustration due
to the geometric structure of the lattice. The triangle
chain is constructed from the one-dimensional array of
the triangles. (See Fig.1.) The triangle is the smallest
unit for making a closed loop which is responsible for a
non-vanishing flux up to the local gauge transformation.
Then, the triangle chain has the simplest lattice struc-
ture to study the effect of the phase factor. On the other
hand, the geometric structure induces a frustration. The
ground state is determined by the competition among the
kinetic energy of the eg electron, the antiferromagnetic
exchange energy of the t2g spins, and the frustration. We
numerically obtain the phase diagram assuming the ab-
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FIG. 1: Lattice structure of triangle chain.
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sence of the phase separation. The ground state exhibits
an insulator with a super-cell structure of the t2g spins
for a wide range of the parameter space. The state has a
continuous degeneracy which is a hallmark of the double-
exchange model in one dimension. The spin structure is
characterized by an incommensurate spin configuration
[39] and a local spin chirality. The spin chirality induces
a non-vanishing flux to the eg electrons. This is an in-
teresting example of the finite spin chirality induced in
electronic models without any assistance of other effects,
such as the anisotropy in spin space, spin-orbit coupling,
lattice distorsion, and external magnetic field, etc.. [40]

II. HAMILTONIAN

The double-exchange model on the triangle chain is
defined by

H = −
(

L
∑

i=1

tµi,i+1c
†
ici+1 +

L/2
∑

i=1

tµ2i−1,2i+1c
†
2i−1c2i+1 + h.c.

)

+J
∑

〈i,j〉

~Si · ~Sj , (1)

where ci,σ is the annihilation operator of the eg electron

at the site i, and ~Si are localized (t2g) spins which are
treated as classical vectors directed along (θi, φi) in the
spherical coordinates. We denote the spin configuration
by a set {θi, φi} (i = 1, 2, · · · , L). Moreover, J( ≥ 0) is
the direct exchange coupling strength between t2g spins.
L (even) is the total number of the sites. The number of
the triangle is L/2. In order to see the effect of the phase
factor in the transfer integral, we study two kinds of the
model. Their transfer integrals are given by [7, 41, 42]

tµ=C
i,j ≡ zi,j = cos

θi

2
cos

θj

2
+ e−i(φi−φj) sin

θi

2
sin

θj

2
(2)

tµ=R
i,j ≡ |zi,j | = cos

Θij

2
(3)

for C- and R-models, respectively. Here Θij is the relative

angle between the spins, ~Si and ~Sj . We impose the peri-
odic boundary condition for the eg electron, cL+1 = c1.

For a given spin configuration, {θi, φi} (i =1,2,· · · ,L),
the transfer integrals, {tµij}, are uniquely determined

through (2) or (3). When we change the spin configu-
ration, {θi, φi}, the range of {tµij} forms a set {{tµij}}.

We study the difference of the ranges between {tCij} and

{tRij}, for the same domain, {{θi, φi}| 0 ≤ θi ≤ π,0 ≤
φi < 2π, i = 1,2,· · · ,L}, or, in other words, the differ-
ence between the sets {{tCij}} and {{tRij}}. For a system

with two sites, the parameter space, tC1,2 = z1,2, contains

that of tR1,2 = |z1,2|, i.e. {tC1,2} ⊃ {tR1,2}. This is because

tC1,2 = z1,2 = |z1,2|e
iΦ, Φ = arg[tan(ℑz1,2/ℜz1,2)], and

we can set Φ ≡ 0 without loss of generality. However,
for any lattice (except for tree) the transfer integrals (2)
and (3) have the mutually exclusive parameter ranges,

i.e. {{tCij}} ∩ {{tRij}}
c 6= φ and {{tCij}}

c ∩ {{tRij}} 6= φ,
where Ac is the complement of the set A. (See Fig.2(a).)
The latter, {{tCij}}

c ∩ {{tRij}} 6= φ, is not obvious. (This
holds even for the simple one dimensional chain with a
periodic boundary condition in a finite system size. The
effect can be attributed to the boundary condition by
a local gauge transformation and becomes unphysical in
the thermodynamic limit.) We show that there exist at
least two examples in {{tCij}}

c ∩{{tRij}} for the model on
a triangle lattice. This holds for any lattice except for
tree. The first example is

tR1,2 = tR2,3 = tR3,1 = cos
Θ

2
. (4)

We set the relative angles, Θ, small and the same for
simplicity. (See Fig.2(b) for the corresponding t2g spin
configuration.) We show that {{tCij}} do not contain (4)
as a subset for any value of (θ1, φ1, θ2, φ2, θ3, φ3). Proof:
We can set (θ3, φ3) = (0, 0) without loss of generality
and get tC2,3 = tC3,1 = cos(Θ/2) by setting (θ1, φ1, θ2, φ2)
= (Θ, φ1, Θ, φ2). The rest parameter can be written by
tC1,2 = cos(Θ/2) cos(Θ/2) +e−i(φ1−φ2) sin(Θ/2) sin(Θ/2),
which never becomes cos(Θ/2) for φ1 −φ2 = 0. Because,
in order to make tC1,2 real, we have to set φ1 − φ2 = nπ

(n =integer) which inevitably leads to tC1,2 = 1 or cosΘ.

This contradicts (4). �

One might consider that this property is due to a finite
Peierls phase along the path 1 → 2 → 3 → 1, because

the solid angle among ~S1, ~S2, and ~S3 is quivalent to the
magnitude of the flux penetrating the triangle. However,
this naive observation fails. Even when the three spins
are coplanar, there exist an element in {{tCij}}

c∩{{tRij}}.
The second example is

tR1,2 = cos
Θ1,2

2
, tR2,3 = cos

Θ2,3

2
, tR3,1 = cos

Θ3,1

2
, (5)

with the restrictions Θ1,2+Θ2,3+Θ3,1 = 2π and tRi,j > 0.

(See Fig. 2(c).) We show that {{tCij}} do not contain the
set (5) as a subset for any value of (θ1, φ1, θ2, φ2, θ3, φ3).
Proof: We set (θ3, φ3) = (0, 0) without loss of generality

(a) (b)

Θ
Θ

Θ
S2

S3

S1

S1

S2

S3

(c)

Θ2,3 Θ1,2

Θ3,1

{{t    }}i,j
C {{t    }}i,j

R

FIG. 2: (a) The relation between sets, {{tC
i,j}} and {{tR

i,j}}.
(b), (c) Examples of t2g spin configuration which realize the
elements in {{tC

ij}}
c ∩ {{tR

ij}}. (b) The eg electron gets com-
plex transfer integrals by a motion 1 → 2 → 3 → 1 and (c)
it gets real transfer integrals by the same motion. The three
spins are coplanar in (c).
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and get

tC2,3 = cosΘ2,3/2 = cos θ2/2 > 0,

tC3,1 = cosΘ3,1/2 = cos θ1/2 > 0,

tC1,2 = − cosΘ1,2/2 < 0. (6)

This means that the one of the three transfer integrals
in {tCi,j} should be negative.� The general proof is not
easy.

III. METHOD

To obtain the ground state we employ the method used
in ref. [23]. When we assume an occurrence of the 2kF

Peierls instability, the unit cell for the transfer integral
contains 2q sites (or, in other words, q triangles) at the
filling x = p/2q where p and q are mutually prime. The
kinetic part in the Hamiltonian (1) is reduced to

Ht = −

L/2q
∑

j=1

(

2q
∑

i=1

ti,i+1c
†
Nj+i−1cNj+i

+

2q/2
∑

i=1

t2i−1,2i+1c
†
Nj+2i−1cNj+2i+1 + h.c.

)

,(7)

where 2q is the number of sites contained in the unit cell
and L is assumed to be the multiple of 2q. To obtain the
ground state, we numerically optimize the functional

E({θi, φi}) = Et({θi, φi})

+JS2

2q
∑

〈i,j〉

[

cos θi cos θj + sin θi sin θj cos(φi − φj)
]

,(8)

where Et({θi, φi}) is obtained by the numerical diagonal-
ization of (7).

In the calculation, the 2kF spin-induced Peierls insta-
bility for the eg electron is assumed. For a sufficient large
JS2( >

∼ 0.5) and x = 0.5, 0.25, we confirmed that the as-
sumption is valid in the following sense: We calculated
the ground state energy for a more large super-cell struc-
ture which is not characterized by 2kF modulation of the
transfer integral and found that the energy is the same
upto 10 digits as that of the 2kF , and the spacial period-
icity is just the repetition of that of the 2kF .

IV. PHASE DIAGRAM FOR C-MODEL

We show the phase diagram for C-model in Fig.3(a).
The phases are classified by the spin configuration, the
modulation of the transfer integrals, and the position of
the Fermi point.

A. Several limits

(1) For J = 0 the spin configuration is expected to be
ferromagnetic, because the double-exchange mechanism
widens the energy band width of eg electrons to gain the
kinetic energy. The ground state is metallic.
(2) For J = ∞ or x = 0, 1, the spin configuration exhibits
mutually 120-degree structure because of the frustration.
(3) For x = 1/2, in this model the Wigner-Sites cell con-
tains two sites and the state is a band insulator.

B. Region JS
2 ∼ 0

We have two phases.
(1) For x < 0.5, the state is the ferromagnetic metal
(FM). The spin configuration is ferromagnetic and the
amplitude of the transfer integrals becomes uniform. The
unit cell of the transfer integral coincides with that of the
Wigner-Sites cell. Then we have an empty upper band
and a partially filled lower band.
(2) For x > 0.5, the state exhibits an incommensurate [39]
band insulator (BI-1). For x = p/2q, a ferromagnetic 2q-
merization occurs. The spin configuration is completely
ferromagnetic within the domain and incommensurate in
long distance. All the energy bands are dispersive. The
energy gap opens at the Fermi point.

C. Region JS
2 → ∞

The spin configuration is nearly 120 degree structure
and three spins in a triangle are coplanar.
(1) For x < 0.5, the state exhibits the incommensurate
band insulator (BI-2). All the sub-bands are dispersive.
(This is in contrast to the simple one dimensional chain
where all the sub-bands are dispersionless [23].)
(2) For x > 0.5, the state is in the metallic phase (120M-
1). The amplitude of the transfer integral is uniform as a
unit of the Wigner-Sites cell and we have two dispersive
energy bands.

D. Region JS
2 ∼ 0.25

The spin configuration has a rich structure because
of the competition between the antiferromagnetic ex-
change coupling and the kinetic energy of the eg elec-
trons which favors the ferromagnetic spin configuration.
The incommensurate insulator with dispersionless energy
bands (BI-3) occupies a large region in the center of the
diagram. Except for x = 1/2, the spin configuration and
the transfer integral are incommensurate. (The property
is the same that of the incommensurate gapful phase in
the simple one dimensional chain [23].) In the masked
region in the diagram, the three spins in each triangle
are not coplanar. This phase is characterized by a finite
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spin chirality and the non-vanishing flux when eg elec-
tron moves around one of the triangles. (The chirality

is defined by
∑

j〈
~S1 · (~S2 × ~S3)〉j , where j is the index

of the triangle.) The state exhibits continuous infinite
degeneracy. Therefore, the state is a chiral glass. Each
degenerate ground state has a finite chirality. Because
of the lattice structure, where the adjacent two triangles
share only one site, the degenerate ground states with
different magnitude of the chirality are continuously con-
nected to each other. The continuous symmetry breaking
is forbidden in one dimension. Therefore, in general, the
chirality vanishes because the ground state is a superpo-

x0 10.5
0

0.25

0.50

120M-1

BI-2

BI-3

FM

BI-1

JS
2

0

0.25

0.50

BI-6

FM
BI-4

AFM

120M-2

BI-5

BI-7

BI-8

JS
2

(a)

(b)

FIG. 3: Possible phase diagrams for C-model (a) and R-model
(b) as a function of the electron concentration x and antifer-
romagnetic direct exchange coupling JS

2 between t2g spins.
FM is the ferromagnetic metal phase. BI’s are the incom-
mensurate band insulators with incommensurate ferromag-
netic polymerization (BI-1), with incommensurate spin (BI-
2,4,5,6), and with dispersionless energy band (BI-3,7). 120M-
1 and 2 are the metallic phases with nearly 120 degree struc-
ture. AFM is the sub-lattice antiferromagnetic phase. The
masked regions are the chiral glass phases. The calculation is
performed at points where broken lines cross.

sition of the states with different chiralities.

V. PHASE DIAGRAM FOR R-MODEL

The phase diagram for R-model is shown in Fig.3(b).

A. Region JS
2 ∼ 0

We have three phases.
(1) ferromagnetic metal phase (FM) for x < 0.5,
(2) incommensurate insulating phase (BI-4) for 0.5 < x
< 0.85, and
(3) metallic antiferromagnetic phase (AFM) for 0.85 <
x.

In BI-4 phase three spins in each triangle are coplanar
within a numerical error. This property is different from
that of BI-1 phase in C-model. The AFM phase is sub-
lattice AF and the transfer integrals between the sub-
lattices terminate. Then we have one cosine band and a
decoupled dispersionless energy band.

B. Region JS
2 → ∞

The spin configuration is nearly 120 degree structure
and three spins in each triangle are coplanar. There are
three phases:
(1) metallic phase (120M-2) for 0.15 < x < 0.35,
(2) incommensurate insulator for 0 < x < 0.15 (BI-5)
and 0.35 < x < 0.85 (BI-6), and
(3) incommensurate insulator with dispersionless energy
band (BI-7) for 0.85 < x.

The difference between 120M-1 and 120M-2 phases is
as following: The transfer integrals are able to be nega-
tive in 120M-1 whereas all the transfer integrals in 120M-
2 are positive. The case holds between BI-5, 6, and BI-2
phases. We could not find the difference between BI-5
and 6 phases. In BI-7 the spin configuration and the
transfer integral are incommensurate. In this phase all
energy bands are dispersionless because some transfer in-
tegrals vanish due to the spin configuration

C. Region JS
2 ∼ 0.25

The incommensurate insulator with dispersionless en-
ergy band (BI-8) occupies large region in the center of
the diagram except for x = 1/2. The transfer integral
exhibits a modulation. The masked region is the chiral
glass phase. (In the R-model, the transfer integral is re-
placed by it’s absolute value so the eg electron do not
be affected by the phase factor.) In the vicinity of full
filling, there are several phase boundaries of five phases,
BI-4,6,7,8 and AFM. In low dope region, we have four
phases, BI-5,6,8 and 120M-2.
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FIG. 4: Estimates of the ground state energy for C-model
(solid line) and R-model (broken line) as a function of electron
concentration x at JS

2 = 0.3. The error bars are smaller than
the plotted points.

VI. DISCUSSION

We have obtained a possible phase diagram of the
double-exchange model on the triangle chain at zero tem-
perature. The ground state has a rich structure, which
includes a band insulator with an incommensurate spin
structure [39] and a chiral glass phase. These states
exhibit the continuous degeneracy. One of the origins
of the degeneracy is due to the structure of the lattice
where the adjacent triangles share only one site. The
phase diagram is different from the simple one dimen-
sional chain mainly in the following two points: (i) The
structure of the phase diagrams of C- and R-models is
different. (In the simple one dimensional chain, it is the
same.) This is due to the enclosure relation between
{{tCij}} and {{tRij}}. The transfer integral of BI-2 be-

longs to {{tCij}} ∩ {{tRij}}
c, those of BI-7 and BI-6 (x >

0.5) belong to {{tCij}}
c∩{{tRij}}, and those of FM and the

states at x = 0.5 belong to {{tCij}} ∩ {{tRij}}. Reflecting
this property, the different ground states are stabilized in
R- and C-models in the same parameter in (x, J) space.
For a sufficient large JS2, it is found that the ground
state energy of C-model is lower than that of R-model

for x < 0.5 and vice versa for x > 0.5. The example
is shown in Fig.4. (Within our analysis, the energy de-
pendence as a function of the electron concentration is
concave near x ∼ 0 and 1. This suggests the absence of
the phase separation. However, we need further investi-
gation for the definite result.) Then we may be careful
when we substitute or approximate (2) by (3). (ii) For
a small J , the global structure of the phase diagram is
similar to that of the simple one dimensional chain. How-
ever, when J is large enough, the 120-degree structure is
dominant because of the frustration. Thus the AF phase
which is appeared in the simple one dimensional chain
vanishes.

We use the numerical optimization method to obtain
the ground state energy. In general, the method is known
to be difficult to the function with many variables. We
have two sites in the unit cell and two parameters, {θ, φ},
for each site. Therefore, we have 4q independent parame-
ters which should be optimized for an electron concentra-
tion x = p/q. The inverse of the denominator is the reso-
lution of the electron concentration in the phase diagram.
Actually, for x = 1/10 we have 40 parameters and the
number of parameter is a realistic limit of our numerical
calculation. We cannot examine the electron concentra-
tion with more large denominator by the present method.
The connectivity of the critical lines and the precise po-
sition of the phase boundaries are not clear due to the
above difficulty. The simple extension of the method for
many parameters seems not to be realistic.
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